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A finite-difference procedure for three-dimensional parabolic flows is used to predict 
the development of Taylor vortices in the flow between concentric rotating cylinders, 
resulting from the growth of small disturbances of a Couette flow. Predictions of such 
flows are presented in the developing and fully developed region. A precise calculation 
of the wavelength of the vortices has been possible by employing a periodic boundary 
condition on the pressure field. The predicted torque coefficient compares well with 
experimental data. The critical Taylor number has also been predicted with good 
accuracy. 

1. Introduction 
1.1.  The problem considered 

The phenomenon of Taylor vortices is of significance to the understanding of hydro- 
dynamic stability of fluid flows. Taylor (1 923) observed the generation of a system of 
toroidal vortices in flows between long rotating concentric cylinders (figure 1). In  his 
experiment, the inner cylinder rotated while the outer was at  rest. These vortices, now 
known as Taylor vortices, occur if a certain parameter exceeds a critical value; this is 
the Taylor number (T = wpdv-l(d/R,)*, where d denotes the width of the annular 
gap, Ri the inner radius, wp the peripheral velocity of the inner cylinder and v the 
kinematic viscosity of the fluid). The formation of these vortices can be explained by 
the fact that if a rotating fluid particle is displaced radially outwards by some means 
then it tends to move further outwards because the ‘centrifugal force ’ on it exceeds 
that on the less rapidly rotating fluid around it. 

In  the present study, the parabolic differential equations governing developing 
three-dimensional duct flows are solved by the procedure of Patankar & Spalding 
(1972) to predict the critical Taylor number and the development of the vortices. 

1.2. Previous work 

The flow between concentric rotating cylinders has been subjected to both experi- 
mental and theoretical investigations for many years. In this subsection, an outline 
is given of the previous work. 

ExperimentaZ. The early experimental investigations of Couette (1  890) and Mallock 
(1 888) were directed towards testing the validity of the Newtonian-stress approxima- 
tion in the Navier-Stokes equation. In  Couette’s experiment, the inner cylinder was 
fixed and the outer one was rotating. It was found that the drag on the inner cylinder 
was proportional to the velocity of the outer one until a certain critical velocity was 
reached. With a further increase of speed, the drag increased at a rate greater than 
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FIGURE 1. Physical situation and co-ordinate system. 

the rate of increase of the cylinder velocity. This phenomenon was attributed to the 
onset of turbulence. Mallock extended this experiment to cover the case in which the 
inner cylinder rotated and the outer one remained at  rest. These experiments indicated 
a very low critical speed for the transition of the flow. In  a later investigation, Taylor 
(1923) discovered the existence of toroidal vortices above the critical speed. Taylor 
(1936) also measured torque-velocity characteristics. 

An extensive investigation of such flows, using flow-visualization techniques, was 
carried out by Coles (1965). He identified two distinct kinds of transition in flow 
between concentric cylinders. The first, stable vortex flows are established when the 
velocity of the inner cylinder is increased to a value just above the critical Taylor 
number. The vortices are closed rings wrapped around the inner cylinder. This flow 
has been observed to be two-dimensional. As the velocity is further increased beyond 
the critical Taylor number, the flow pattern changes in character and becomes three- 
dimensional. It was not possible to locate precisely the Taylor number at which the 
three-dimensional effects become prominent, but Coles reported a zone of hysteresis 
near the second transition. The three-dimensional motion consists of a circumferential 
wave motion, superimposed on the cellular structure observed after the first transition. 
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Theoretical. The stability of flow between concentric rotating cylinders was fist 
investigated by Rayleigh (1916), who assumed that the fluid was inviscid. The case 
of viscous fluid was first investigated by Taylor (1935) by means of a linear theory. 
Later Stuart (1958) investigated the problem, retaining the nonlinear terms in the 
equation of motion. He discovered the existence of equilibrium between the transfer 
of energy from the base flow to the secondary flow and the viscous energy dissipation 
in the secondary flow. A further extension of such concepts was carried out by Davey 
(1962). Recently Taylor-vortex flow between eccentric cylinders has been the subject 
of theoretical investigations by DiPrima & Stuart (1972, 1975). Meyer (1966) investi- 
gated numerically the fully developed situation by an explicit two-dimensional time- 
marching method. 

1.3. Present contribution 

The present study concerns the numerical prediction of the development of Taylor 
vortices when the laminar Couette flow is slightly disturbed ; the finite-difference 
method of Patankar & Spalding (1972) is used to compute the developing and fully 
developed flow fields. 

The axial length of the vortices is determined by employing a periodic boundary 
condition on the pressure field. The drag characteristics are compared with the experi- 
mental results of Taylor (1936). The critical Taylor number is predicted to a good 
accuracy. 

In the present investigation, the computations are performed for moderate Taylor 
numbers (T < 5 5 ) ,  because it is only for these that the flow is two-dimensional, as 
explained above. The fluid properties are taken as uniform. 

2. Theory 
2.1. The geometry in question 

In a strict sense, the flow system to be studied is incapable of realization. A wide duct 
with concentric cylindrical walls in which the main direction of flow is circumferential 
is considered. This duct is imagined to have an entrance, where the circumferential 
velocity is linear with radius, and to extend infinitely far in the downstream ($) 
direction. It is the words in italics which express the impossible feature, because $ 
cannot exceed 277 without interference. However, computer programs are not subject 
to such practical limitations. 

2.2. Differential equations 

The physical situation illustrated in figure 1 may conveniently be described in the 
x, y ,  g5 co-ordinate system. The governing differential equations are as follows if 
viscous transport in the $ direction is neglected. 

x momentum: 

y momentum: 
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In these equations, u, v and w represent the velocity components in the 2, y and # 
co-ordinate directions respectively. p represents the density and p is the pressure field. 
The 7’s represent shear stresses and are expressible in terms of the velocity gradients 
and the kinematic viscosity, which is presumed to be uniform. 

A feature of these equations which deserves especial note is that a single pressure 
F is supposed to prevail at each cross-section in the @ momentum equation (3), but 
in the x and y momentum equations (1) and (2) the pressure p is allowed to vary over 
the cross-section. This is an expression of the ‘pressure uncoupling’ that is character- 
istic of parabolic flows (Patankar & Spalding 1972). It does not lead to any significant 
error when the fully developed situation is reached. It should be noted that dependency 
of the velocity field on # ceases in a fully developed situation: the flow becomes 
two-dimensional. 

2.3. Boundary conditions 

A radially linear w velocity profile, together with a perturbation whose magnitude 
was 5 yo of the mean value, was set as the upstream condition. The radial (u) and axial 
(v) components were assumed to be zero. 

The boundary conditions on the cylinder walls are 

u = v = 0, w = Ri SZ at the inner wall, 

where Ri is the radius of the inner cylinder and SZ its angular velocity, and 

u = v = w = 0 at the outer wall. 

However, at boundaries normal to the cylinder axis it is necessary to satisfy a periodic 
boundary condition: the pressure difference across the integration domain, which has 
been required to consist of two vortices, must be zero at all radii. This condition can 
be implemented only when the correct width of the vortices has been found. The 
search for the correct width is a special feature of the problem; it has been accomplished 
by an iterative procedure, described in the following subsection. 

2.4. Solution procedure 

The differential equations described in 0 2.1 have been solved by the method of 
Patankar & Spalding (1972) embodied in the computer code STABLE (Steady 
Three-dimensional Analyser of Boundary Layer Equations). A marching-integration 
technique is employed in the circumferential (#) direction in which, at each cross- 
section of the annulus passage, a two-dimensional field of variables is determined. A 
complete description of the method has been given by Patankar & Spalding (1972); 
in the present context, it takes the following form. 

(1)  The axial width of the integration domain is guessed. 
(2) The pressure distribution p(x, y) a t  a longitudinal station and the average 

pressure F at a station downstream of it are guessed. 
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(3) The momentum equations for the x, y and # directions are then solved to get a 
first approximation to the velocity distribution. 

(4) The mean pressure p at the downstream station is kept the same as that at  the 
upstream station by adjusting the mass flow rate through the integration domain. 
The mass flow rate is adjusted by reference to the longitudinal (9) momentum 
equation and the boundary conditions. 

(5) Since the cross-stream velocities u and v do not satisfy the continuity equation 
locally, a ‘Poisson ’ equation for the pressure is derived from this equation and from the 
two momentum equations; this ‘Poisson’ equation is then solved for corrections to the 
pressure fieldp. Then the cross-stream velocities are corrected accordingly. 

(6) A new downstream station is chosen and steps 2-5 are repeated. 
(7) Steps 2-6 are repeated until an unchanging flow pattern has developed. 
(8) A test is made to ensure that the integrated pressure difference across the 

boundaries in the axial direction is less than a pre-specified small quantity; if not, 
steps 1-7 are repeated with a different width (axial extent) of the integration 
domain. 

3. Results 
3.1. Computational details 

In  the majority of computations from which the following results were derived, the 
finite-difference grid possessed 11 intervals in the radial and axial directions. The 
computations were shown by experimentation with finer and coarser grids to depend 
little on grid fineness. The results of such tests are shown in figure 2. 

The forward-step dependency was tested by repeating the computations with 
smaller and larger step sizes; a step size was then chosen which was small enough not 
significantly to affect the solution. The computer time needed to perform one fully 
developed computation was of the order of 250s on a CDC6600 computer, for 1000 
forward steps. 

3.2. Axial width of vortices 
The technique adopted to determine the correct width of the vortices has already 
been explained in 52.3. Figure 3 represents the variation of the non-dimensional 
pressure with the non-dimensional axial width of the integration domain; each point 
represents the result of a different integration process. A zero pressure difference was 
never precisely attained; but an h/D of 1.875 was taken as being the correct one in the 
example shown. 

3.3. Flow field 

In  this subsection the results for developing and fully developed flow are presented. 
Figure 4 represents the development of the circumferential, radial and axial velocities 
from a perturbed one-dimensional solution (at # = 0). Figures 5 (a)  and ( b )  show the 
velocity vectors representing the secondary flow field in a fully developed situation 
at two different Taylor numbers. The circumferential velocity and pressure fields for 
these two situations are plotted in figures 6 and 7. 
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velocity distribution at  a Taylor number of 55; x/d = 0.45, 4 = 0, 280", 420" and 840". 

3.4. Drag characteristics 
Figure 8 compares the predictions of the torque coefficient with the measurements of 
Taylor (1936). The torque coefficient C,, is defined as 

where Mi is the torque required to rotate the inner cylinder. Good agreement is 
observed between numerical predictions and measurements, in the region studied. 
The Taylor number at which vortices start, i.e. 41, has been located fairly well. 

C,, = M i / ~ n p w i  R; h, ( 5 )  

4. Discussion 
The results described in 0 3 demonstrate that it has been possible to make a pre- 

diction of the detailed flow structure of Taylor vortices which is in qualitative and 
quantitative agreement with such experimental data as exist for the two-dimensional 
regime. However no effort has been made to perform computations at  high Taylor 
numbers, at  which the flow develops a wavy form (Coles 1965), for it seems certain 
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FIGURE 5. Secondary flow field at a Taylor number of (a) 45 and (b)  55. 

FIGURE 6 (a). For legend see facing page. 
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FIGURE 6. (a) Circumferential velocity (9 = w/w,) distribution and (a) 
pressure field ( p  f p/&m;) at a Taylor number of 45. 

/ 

wall 

FIGURE 7. (a) Circumferential velocity (67 = w /ws) distribution and 
(b) pressure field (p p/+pw;) at a Taylor number of 55. 
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FIGURE 8. Comparison of predicted torque coefficient for inner cylinder (C, Mi/&pw;nR:h) with 
measurements of Taylor (1936) and with prediction of Stuart (1958); d/R,  = 0.028. x , present 
numerical results; , Taylor's measurements; -, Stuart's prediction. 

that these are of an elliptic character, i.e. exhibit pressure-borne upstream influences 
of downstream events. In  any case computations would have to extend over many 
cells and so would be either very expensive or rather inaccurate. 

5. Conclusions 
The finite-difference method of Patankar & Spalding has been successfully applied 

to predict the development of Taylor vortices in flow between concentric rotating 
cylinders. The predictions show physical realism and exhibit satisfactory agreement 
with experimental results. Further tasks are the following: 

(i) Extension of the method to study the heat-transfer characteristics of such flows. 
(ii) Application of the method to other vortex flows, e.g. Gortler vortices in the 

boundary layer on a concave wall. 

This work forms a part of the research sponsored by the Science Research Council 
under Grant number B/RG/6848/7. The computer program was lent by CHAM 
Limited. Thanks are due to Colleen I. King and Christine MacKenzie for preparation 
of the typescript. 

R E F E R E N C E S  

COLES, D. 1965 J .  Fluid Meoh. 22, 385. 
C o m m ,  M. 1890 Ann. Chim. Phys. (6), 21, 433. 
DAVEY, A. 1962 J .  Pluid Mech. 14, 336. 
DIPRIMA, R.  C. & STUART, J. T. 1972 J .  Fluid MecA. 54,393. 
DIPRIMA, R .  C. & STUART, J. T. 1975 J .  Fluid Mech. 67, 86. 
MALLOCK, A. 1888 Proc. Roy. SOC. A 45, 126. 
MEYER, K. A. 1966 Los Alamos Sci. Lab. Rep. LA-3497. 
PATANKAR, S .  V. & SPALDING, D.  B. 1972 Int. J .  Heat Mass Transfer 15, 1787. 
RAYLEIGH, LORD 1916 Proc. Roy. SOC. A 93, 148. 
STUART, J. T. 1958 J .  Fluid Mech. 4, 1. 
TAYLOR, G. I. 1923 Phil. Trans. A 223, 289. 
TAYLOR, G. I. 1935 Proc. Roy. Soc. A 151, 494. 
TAYLOR, G. I. 1936 Proc. Roy. Soc. A 157, 546. 


